Clustering and multiple imputation of missing data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Imputation for Missing Data

Multiple imputation provides a useful strategy for dealing with data sets with missing values. Instead of filling in a single value for each missing value, Rubin’s (1987) multiple imputation procedure replaces each missing value with a set of plausible values that represent the uncertainty about the right value to impute. These multiply imputed data sets are then analyzed by using standard proc...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

Missing Value Imputation Based on Data Clustering

We propose an efficient nonparametric missing value imputation method based on clustering, called CMI (Clustering-based Missing value Imputation), for dealing with missing values in target attributes. In our approach, we impute the missing values of an instance A with plausible values that are generated from the data in the instances which do not contain missing values and are most similar to t...

متن کامل

Multiple imputation: dealing with missing data.

In many fields, including the field of nephrology, missing data are unfortunately an unavoidable problem in clinical/epidemiological research. The most common methods for dealing with missing data are complete case analysis-excluding patients with missing data--mean substitution--replacing missing values of a variable with the average of known values for that variable-and last observation carri...

متن کامل

assessment of internal validity of prognostic models through bootstrapping and multiple imputation of missing data

background: prognostic models have clinical appeal to aid therapeutic decision making. two main practical challenges in development of such models are assessment of validity of models and imputation of missing data. in this study, importance of imputation of missing data and application of bootstrap technique in development, simplification, and assessment of internal validity of a prognostic mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Basic and Applied Sciences

سال: 2015

ISSN: 2227-5053

DOI: 10.14419/ijbas.v5i1.5470